Rule-Based Embedded HMMs Phoneme Classification to Improve Qur’anic Recitation Recognition

نویسندگان

چکیده

Phoneme classification performance is a critical factor for the successful implementation of speech recognition system. A mispronunciation Arabic short vowels or long can change meaning complete sentence. However, correctly distinguishing phonemes with in Quranic recitation (the Holy book Muslims) still challenging problem even state-of-the-art methods, where duration considered one important features recitation, which called Medd, means that phoneme lengthening governed by strict rules. These call an additional Qur’anic due to based on language characteristics insufficient recognize Tajweed rules, including rules Medd. This paper introduces Rule-Based Duration Algorithm improve recitation. The dataset contain 21 Ayats collected from 30 reciters and are carefully analyzed baseline HMM-based model. Using Hidden Markov Model tied-state triphones, set models optimized constructed integrated into method. proposed algorithm achieved outstanding accuracy, ranging 99.87% 100% according Medd type. obtained results will contribute significantly models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Extending Rule-based Classifiers to Improve Recognition of Imbalanced Classes

This papers deals with inducing rule-based classifiers from imbalanced data, where one class (a minority class) is under-represented in comparison to the remaining classes (majority classes). We discuss reasons for bias of standard classifiers toward recognition of examples from majority classes and misclassifcation of the minority class. To avoid limitations of sequential covering approaches, ...

متن کامل

Control Chart Recognition Patterns using Fuzzy Rule-Based System

Control Chart Patterns (CCPs) recognition is one the most important concepts in control chart application. Relating the patterns exhibited on the control chart to assignable causes is an ambiguous and vague task especially when multiple patterns co-exist. In this study, a fuzzy rule-based system is developed for X ̅ control charts to prioritize the control chart causes based on the accumulated e...

متن کامل

Landmark-based approach to speech recognition: an alternative to HMMs

In this paper, we compare a Probabilistic Landmark-Based speech recognition System (LBS) which uses Knowledge-based Acoustic Parameters (APs) as the front-end with an HMMbased recognition system that uses the Mel-Frequency Cepstral Coefficients as its front end. The advantages of LBS based on APs are (1) the APs are normalized for extra-linguistic information, (2) acoustic analysis at different...

متن کامل

Rule-based Korean Grapheme to Phoneme Conversion Using Sound Patterns

Grapheme-to-phoneme conversion plays an important role in text-to-speech applications and other fields of computational linguistics. Although Korean uses a phonemic writing system, it must have a grapheme-to-phoneme conversion for speech synthesis because Korean writing system does not always reflect its actual pronunciations. This paper describes a grapheme-to-phoneme conversion method based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12010176